Skidmore & Wheaton 2022 riverscapes as adaptation infrastructure
Jump to navigation
Jump to search
- Last Ten Documents
- Baker et al 2020 restoration scaling HaBREM
- WSE 2021 snohomish hydrologic and hydraulic modelling.pdf
- Booth et al 2021 lower skykomish geomorphic assessment.pdf
- RCO et al 2023 Align grant coordination MOU.pdf
- ESA 2022 invasive species & salmon recovery snohomish.pdf
- Silver 2021 phalaris reed canarygrass control.pdf
- BLM 1999 sampling vegetation attributes.pdf
- Moore et al 2003 vegetation monitoring manual.pdf
- Ostrom 1990 governing the commons
- Wiki Rules
- Wiki text does not reflect the policy or opinion of any agency or organization
- Please adhere to our social contract
- Complain here, and be nice.
- What Links To This Page?
- Documents (← links)
- Simenstad et al 2011 puget sound nearshore change analysis (← links)
- Yang & Khangaonkar 2008 (← links)
- Simenstad et al 2006 (← links)
- Athearn et al 2010 mapping elevation lidar vs sonar (← links)
- Kairis & Rybczyk 2010 (← links)
- Yang et al 2011 model flood and tide (← links)
- Climate Change (← links)
- French & Stoddart 1992 marsh hydraulics (← links)
- Simenstad & Cordell 2000 habitat assessment for salmon (← links)
- Simenstad et al 1982 role of estuaries in salmon life history (← links)
- Hood 2002 channel allometry (← links)
- Williams et al 2002 hydraulic geometry (← links)
- Hayes et al 2011 bulltrout use in skagit bay (← links)
- Simensted et al 2006 (← links)
- Floodplains (← links)
- Hood 2012 beaver in tidal marsh (← links)
- Hood 2007 wood and skagit delta shrub swamp (← links)
- Eilers 1974 nehalem marsh biogeography (← links)
- Frenkel & Eilers 1976 upper limit of oregon tidal marsh (← links)
- Frenkel & Morlan 1990 salmon river salt marsh restoration (← links)
- Jefferson 1974 oregon salt marsh communities (← links)
- Collins & Sheik 2005 reconstruction of puget sound tidal marsh (← links)
- Welcome to Salish Sea Restoration (← links)
- Pess et al 2011 salmon density on Elwha ELJs (← links)
- Vines et al 2000 creosote and herring spawn (← links)
- Beck et al 2001 estuarine nursery conservation (← links)
- Syvitski et al 2005 distributary channels and sediment dispersal (← links)
- Hood 2002 channel geometry effect on invertebrates (← links)
- Hood 2007 tidal channel and island area (← links)
- Quinn et al 2013 coho salmon elwha delta pre restoration (← links)
- Allan 2004 land use and stream ecosystems (← links)
- Temmerman et al. 2005 (← links)
- Yang et al. 2010b (← links)
- Crain et al 2004 mechanisms driving salt marsh composition (← links)
- Hutchinson 1988 salt tolerance of plants (← links)
- Ewing 1986 skagit tidal marsh productivity (← links)
- Hamlet et al 2001 climate change and water resources (← links)
- Morris et al 2002 coastal wetland sea level rise (← links)
- Morris 2007 biomass affects salt marsh accretion (← links)
- Kirwan & Murray 2007 tidal marsh evolution model (← links)
- Mofjeld et al. 2002 (← links)
- Burdick et al 2001 salinity affects phragmites (← links)
- De Leeuw et al. 1991 factors affecting intertidal salinity gradient (← links)
- Yang and Khangaonkar 2009 (← links)
- Dunwiddie et al. 2009 restoration resilience for climate change (← links)
- Hood 2006 tidal channel formation as depositional (← links)
- Kirwan et al 2008 goose impacts on delta wetlands (← links)
- Kirwan and Guntenspergen 2010 (← links)
- Mudd et al 2009 tidal marsh, sea level, productivty and carbon (← links)
Skidmore, P. and Wheaton, J., 2022. Riverscapes as natural infrastructure: Meeting challenges of climate adaptation and ecosystem restoration. Anthropocene, 38, p.100334.
https://www.sciencedirect.com/science/article/pii/S2213305422000157
Notes[edit]
- Opinion piece, using emotive language.
- "Paradoxically, hydraulic inefficiency is a hallmark of a healthy riverscape"
- Presents "freedom space" as measure of the proportion of floodplain available for river processes.
- Does not define "river health" in terms of specific functions or ecosystem services, except piecemeal. Assembling this list could help sharpen analysis, with the following described in this article: retain sediment and runoff, recharge alluvial aquafirs, store and slowly release clean water, ecological value for wildlife, carbon sequestration, nutrient capture, streamflow persistence, moderated flood flow, moderated temperature, increased wetland functions.
- Cites critique of "a preponderance of piece-meal, project-scale tactics that emphasize static habitat and channel reconstruction rather than restoring ecosystem processes that can sustain values over time"
- References degraded baseline behind modern river restoration concepts: "Ironically, the most common river restoration efforts have focused on re-creating simplified streams with only modest and temporary gains to show for their efforts (Wohl et al., 2015). Because streams have persisted in these altered and simplified states for so long, little conceptual awareness of historical stream condition remains"
- Identifies Bridge Creek site in OR as first documented experiment in beaver-assisted restoration.
- Subtle tension between concept of "limiting channel-stabilizing features" (p4) and naturally occurring large log jams which force natural anastomosing channel form, and channel switching.
- The conceptual principle that "river ecosystems have a tremendous capacity for passive restoration if given the space for dynamic interactions between the channel and floodplain" (p4) doesn't acknowledge that there may be thresholds where intervention is necessary to move a river out of a reinforcing feedback loop of incision (also described in the article).
- Article does not consider how to think about food security as part of the services provided by floodplains in arid climates.