Beechie et al 2010 process based restoration of rivers
- Last Ten Products
- Small, D., P. Smith, I. Keren, T. Quinn, P. Schlenger 2024 Fine scale movement of juvenile salmon to inform tidal fish passage restoration in Puget Sound
- Greene & Chamberlin 2024 multi-scale benefits of delta restoration for salmon
- Seedlot Selection Tool
- Bioregional Funding Facilities Funding Resources
- Cereghino 2024 draft riverscape agroforestry principles
- FEMA 2023 Flood Risk Mapping Guidance
- Cereghino 2024 Salish sea platform short intro
- Islands in the Salish Sea
- USDA Plants Database
- ESA 2024 bellingham culvert prioritization
- Product Categories
- Google scholar search
- Linked To This Product
- Wiki Rules
- Wiki text does not reflect the policy or opinion of any agency or organization
- Please adhere to our Social Contract and Style Guide
- Complain here, and be nice.
Beechie, Timothy J., David A. Sear, Julian D. Olden, George R. Pess, John M. Buffington, Hamish Moir, Philip Roni, and Michael M. Pollock. 2010. Process-based Principles for Restoring River Ecosystems. Bioscience, Vol. 60, No. 3, pp. 209-222.
Abstract: Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems. Ecosystem conditions at any site are governed by hierarchical regional, watershed, and reach-scale processes controlling hydrologic and sediment regimes; floodplain and aquatic habitat dynamics; and riparian and aquatic biota. We outline and illustrate four process-based principles that ensure river restoration will be guided toward sustainable actions: (1) restoration actions should address the root causes of degradation, (2) actions must be consistent with the physical and biological potential of the site, (3) actions should be at a scale commensurate with environmental problems, and (4) actions should have clearly articulated expected outcomes for ecosystem dynamics. Applying these principles will help avoid common pitfalls in river restoration, such as creating habitat types that are outside of a site’s natural potential, attempting to build static habitats in dynamic environments, or constructing habitat features that are ultimately overwhelmed by unconsidered system drivers.