Beechie et al 2010 process based restoration of rivers
- Last Ten Documents
- Speybroeck et al 2006 beach nourishment coastal defense
- Kindeberg et al 2022 multifunctional nature-based coastal defense
- Shipman 2001 beach nourishment puget sound.pdf
- Johannessen & Waggoner 2008 lummi shore road monitoring.pdf
- Baker et al 2020 restoration scaling HaBREM
- WSE 2021 snohomish hydrologic and hydraulic modelling.pdf
- Booth et al 2021 lower skykomish geomorphic assessment.pdf
- RCO et al 2023 Align grant coordination MOU.pdf
- Skidmore & Wheaton 2022 riverscapes as adaptation infrastructure
- ESA 2022 invasive species & salmon recovery snohomish.pdf
- Wiki Rules
- Wiki text does not reflect the policy or opinion of any agency or organization
- Please adhere to our social contract
- Complain here, and be nice.
- What Links To This Page?
- Documents (← links)
- Floodplains (← links)
- Lowland Watersheds (← links)
- Restoration (← links)
Beechie, Timothy J., David A. Sear, Julian D. Olden, George R. Pess, John M. Buffington, Hamish Moir, Philip Roni, and Michael M. Pollock. 2010. Process-based Principles for Restoring River Ecosystems. Bioscience, Vol. 60, No. 3, pp. 209-222.
Abstract: Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems. Ecosystem conditions at any site are governed by hierarchical regional, watershed, and reach-scale processes controlling hydrologic and sediment regimes; floodplain and aquatic habitat dynamics; and riparian and aquatic biota. We outline and illustrate four process-based principles that ensure river restoration will be guided toward sustainable actions: (1) restoration actions should address the root causes of degradation, (2) actions must be consistent with the physical and biological potential of the site, (3) actions should be at a scale commensurate with environmental problems, and (4) actions should have clearly articulated expected outcomes for ecosystem dynamics. Applying these principles will help avoid common pitfalls in river restoration, such as creating habitat types that are outside of a site’s natural potential, attempting to build static habitats in dynamic environments, or constructing habitat features that are ultimately overwhelmed by unconsidered system drivers.