Temmerman et al. 2005

From Salish Sea Wiki
Jump to: navigation, search



UploadDocumentButton.PNG

Last Ten Documents


Wiki Rules

  • Wiki text does not reflect the policy or opinion of any agency or organization
  • Please adhere to our social contract
  • Complain here, and be nice.


Link to List of Workgroups Link to List of Efforts Link to List of Resources Link to List of Documents Link to List of Topics Link to List of Places

Link to Headwater Sites Link to Lowland Watershed Sites Link to Floodplain Sites Link to Delta Sites Link to Embayment Sites Link to Beach Sites Link to Rocky Headland Sites


Temmerman, S., T.J. Bouma, G. Govers, Z.B. Wang, M.B. De Vries, P.M.J. Herman. 2005. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. J. Geophys. Res. 110:F4:2156-2202. http://dx.doi.org/10.1029/2005JF000301

Abstract A three-dimensional hydrodynamic and sedimentparticles of clay, silt, sand, gravel, or cobble, transported by water, are called sediment. transport model was used to study the relative impact of (1) vegetation, (2) micro-topography, and (3) water level fluctuations on the spatial flow and sedimentation patterns in a tidal marsh landscape during single inundation events. The model incorporates three-dimensional (3-D) effects of vegetation on the flow (drag and turbulence). After extensive calibration and validation against field data, the model showed that the 3-D vegetation structure is determinant for the flow and sedimentation patterns. As long as the water level is below the top of the vegetation, differences in flow resistance between vegetated and unvegetated areas result in faster flow routing over unvegetated areas, so that vegetated areas are flooded from unvegetated areas, with flow directions more or less perpendicular to the vegetation edge. At the vegetation edge, flow velocities are reduced and sediments are rapidly trapped. In contrast, in between vegetated areas, flow velocities are enhanced, resulting in reduced sedimentation or erosion. As the water level overtops the vegetation, the flow paths described above change to more large-scale sheet flow crossing both vegetated and unvegetated areas. As a result, sedimentation patterns are then spatially more homogeneous. Our results suggest that the presence of a vegetation cover is the key factor controlling the long-term geomorphic development of tidal marsh landforms, leading to the formation of (1) unvegetated tidal channels and (2) vegetated platforms with a levee-basin topography in between these channels.