Temmerman et al. 2005

From Salish Sea Wiki
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Product Icon.jpg

Product

A product is any output of an effort, including datasets, documents, graphics, or websites.


UploadDocumentButton.PNG

Last Ten Products
Product Categories
Dataset(1 P)
Document(2 C, 139 P, 506 F)
Graphic(2 C, 1 F)
Website(23 P)
Google scholar search
Linked To This Product
Wiki Rules


Link to List of Workgroups Link to List of Topics Link to List of Places

Link to List of Efforts Link to List of Products Link to List of Documents Link to List of Graphics Link to List of Websites

Link to Delta Sites Link to Embayment Sites Link to Beach Sites Link to Rocky Headland Sites

Link to Headwater Sites Link to Lowland Watershed Sites Link to Floodplain Sites

Temmerman, S., T.J. Bouma, G. Govers, Z.B. Wang, M.B. De Vries, P.M.J. Herman. 2005. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. J. Geophys. Res. 110:F4:2156-2202. http://dx.doi.org/10.1029/2005JF000301

Abstract A three-dimensional hydrodynamic and sediment transport model was used to study the relative impact of (1) vegetation, (2) micro-topography, and (3) water level fluctuations on the spatial flow and sedimentation patterns in a tidal marsh landscape during single inundation events. The model incorporates three-dimensional (3-D) effects of vegetation on the flow (drag and turbulence). After extensive calibration and validation against field data, the model showed that the 3-D vegetation structure is determinant for the flow and sedimentation patterns. As long as the water level is below the top of the vegetation, differences in flow resistance between vegetated and unvegetated areas result in faster flow routing over unvegetated areas, so that vegetated areas are flooded from unvegetated areas, with flow directions more or less perpendicular to the vegetation edge. At the vegetation edge, flow velocities are reduced and sediments are rapidly trapped. In contrast, in between vegetated areas, flow velocities are enhanced, resulting in reduced sedimentation or erosion. As the water level overtops the vegetation, the flow paths described above change to more large-scale sheet flow crossing both vegetated and unvegetated areas. As a result, sedimentation patterns are then spatially more homogeneous. Our results suggest that the presence of a vegetation cover is the key factor controlling the long-term geomorphic development of tidal marsh landforms, leading to the formation of (1) unvegetated tidal channels and (2) vegetated platforms with a levee-basin topography in between these channels.